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The temperature distribution in the magnetohydrodynamic axial f low in a circular 
pipe has been found by using an alternating direction implicit method which has 
been suitably modified for r--O-z geometry. First the temperature distribution far 
from the discontinuity, which ceases to depend upon the axial coordinate, has 
been found. This has been used to determine the results on both sides of the 
discontinuity. It is found that the temperature falls as the Hartmann number is 
increased, and convection dominates for large values of the Peclet number. The 
effect of the Hartmann number is more pronounced when Peclet number is large. 

Keywords: magnetohydrodynamics, heat transfer, a/ternat/ng direction 
impl/c/t methods 

Introduction 

The study of magnetohydrodynamic (MHD) flow and 
heat transfer problems has become important due to 
several engineering applications in fields like MHD 
flowmetry, MHD power generation and in the design of 
cooling systems for nuclear reactors where liquid metals 
are used as coolants. Some simple MHD heat transfer 
problems like Hartmann flow between two parallel planes 
have been described by Sutton and Sherman 1. As 
observed by them this simple one-dimensional problem 
becomes two-dimensional if wall temperature is 
discontinuous. Such problems offer many more 
difficulties for solution, as one can find in Nigam and 
Singh 2 who have considered heat transfer by laminar flow 
between parallel plates under the action of a transverse 
magnetic field. 

In more practical situations such as MHD flow in 
a circular pipe the corresponding problem becomes three- 
dimensional, and only an efficient numerical method can 
be helpful in such cases. In the present paper an 
alternating direction implicit (ADI) method is described 
and used to find numerical results for the temperature 
distribution of MHD axial flow of a viscous 
incompressible and electrically conducting fluid in a 
straight, long circular pipe. The wall of the pipe has a 
temperature discontinuity at a section, on one side of 
which the temperature is T 1 and on the other side T 2 (see 
Fig 1). Owing to complex coupling of equations of 
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electrodynamics and fluid mechanics, the resulting 
equations are fairly complicated and the exact analytical 
solution is out of the question. 

The use of the ADI method in solving parabolic 
and elliptic equations in rectangular geometry is well 
known 3, but its use in polar coordinates, particularly 
when the singularity r = 0 lies in the domain of interest, 
has appeared only very recently in connection with the 
solution of diffusion equation 4,5. The aim of this paper is 
to extend the method to the energy equation in MHD 
which involves r, 0 and z coordinates. The numerical 
results have been obtained for various values of the 
Hartmann number and Peclet number. Graphs and 
tables are given for the temperature distribution far from 
the discontinuity and also along the axis of the pipe. It is 
found that temperatures falls with increasing Hartmann 
number, and convection dominates as the Peclet number 
is increased. 

Basic equations 

The basic equations governing the steady flow of an 
incompressible, viscous and electrically conducting fluid 
in cylindrical coordinates (r', 0, z') in the presence of a 
transverse magnetic field are 

rlVZV'+~oo(COsOOB' &, (1) 

2V2B ' + Bo(cOS 0 8V' Or' (2) 

k(V 2T' k-~z,2 ) 

sin00B'. ' ]= 
r' O0 / - K  

sin0 #V'~ 
r' O0 ]=0 

O ' 
po~7 

(3) 
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While deriving these equations, we have made the 
assumption that the flow is purely axial and the buoyancy 
forces caused by the temperature difference are negligible 
compared with the inertial and viscous forces. As a result 
of this assumption the velocity V' and the induced 
magnetic field B' are functions of r' and 0 only, although 
the temperature T' depends on r', 0 and z'. Such 
assumptions have been made by Nigam and Singh 2 for 
Hartmann flow, and Singh and Lal 6'7 for MHD flows 
between coaxial cylinders and through a rectangular pipe, 
respectively. 

Let us introduce the dimensionless variables and 
parameters defined by 

r=r'/a, z=z'/a, V o =Ka2/q 

V=V'/Vo, B=B'/Vo#o(arl) ,/2, MZ=B2oa2a/q 

T= (T ' -  T2)/(T , - T2), Q = V2tl/k(T, - T2), 

P = p Voac/k (4) 

Then Eq (1) to (3) are reduced to 

V , + r V , + r ~ V o o + M  cos O B , -  Bo = - 1  (5) 

( s inOvo)=O (6) Boo + M cos 0 V, r 
1 1 

B,. + rB ,  +~£ 

1 1 
T . + r T , +  7 

where 

Too+ T=-PV(r,O)T~= -Qf(r ,O)  (7) 

f (r ,O)=V 2 d-~ V 2 +B 2 + ~ B  2 (8) 

The exact solution of Eqs (4) and (5), subject to the 
boundary conditions 

V(1,0) = B(1,0) = 0 (9) 

which correspond to electrically non-conducting walls, 
has been found by Gold s. Singh and Lai 9 obtained 

numerical solution by using a finite element method. 
Gold's results are 

V(r, 0)= (u e-~'~°'° + v e ~ .... o)/2 (10) 

B(r, O) = (u e-"~°s° _ v e ''~°s° - r cos 0/~)/2 (11 ) 

where u, v are given by 

1 ~ I~ (= )  
u(r ,O)=~ ~ eo, 7~, , lo(=r)cos~oO (12) 

1 ~ I ' (~)  
~= (-1)~'eo, I~(ar)cos~oO (13) v(r,O)= ~ -o I ~  

with 

e,~=l fo rgo=0 

=2  for 09~>1 (14) 

The case ~ = 0  corresponds to the hydrodynamic 
Poiseuille flow. In this case the velocity field is 
independent of 0 and is given by 

V(r) = (1 - r2)/4 (15) 

The aim of the present paper is to determine the 
temperature distribution T(r, O,z) from Eq (7) using the 
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Radius of the pipe 
See Eq (25) 
Applied magnetic field 
Specific heat of the fluid 
See Eq (32) 
Ar, the mesh size in the r-direction 
See Eqs (22) and (28) 
Modifined Bessel function 
Suffixes used in r, 0, z directions 
Constant axial pressure gradient 
Thermal conductivity of the fluid 
Hartmann number, Peclet number 
Parameters defined in Eq (4) 
Cylindrical coordinates 
See Eqs (2) and (28) 
Dimensionless r', z' and T' 
h/Az 
Temperature as z--* 4- 
Wall temperature on the two sides of the 
discontinuity 

Tln-jk 
T'(r',O,z') 
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V,B 
V'(r', O) 
Ar, AO, Az 
V, V 2 

2 
Po 
P 
~7 

4~ 

(0 

Temperature at ri, Oi, z k after n iterations 
Temperature at (r', 0, z') 
Defined in Eqs (12) and (13) 
Dimensionless velocity and induced 
magnetic field 
Axial velocity 
Mesh size in r, 0, z directions 
Grad and div (grad) in polar coordinates 
(r', 0) 
Coefficient of viscosity of the fluid 
Magnetic diffusivity (/~o a) -1 
A constant (= 4n x 10-7 in MKS system) 
Density of the fluid 
Electric conductivity of the fluid 
Used for T+ ~o 
Value of q~ at ri, 0j after n iterations 
~b a t r = 0  
A parameter used to accelerate 
convergence 
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above expressions for the velocity and induced magnetic 
field. The boundary conditions on T are 

T(1,O,z)=l, z < 0  

=0,  z > 0  0~<0~<27t (16) 

The other boundary conditions are provided by the 
temperature as z ~  _+ ~ .  Let us define 

T+~(r,O)= lim T(r,O,z) (17) 
z ~ + ~  

To obtain the differential equation satisfied by T~ and 
T_ ~o, we drop the terms involving partial derivatives of T 
with respect to z from Eq (7). This is due to the fact that as 
z---+ -4-~, the perturbations in the temperature due to 
discontinuity at z = 0 die out and so it ceases to depend 
upon z. Thus we get 

( 0  2 1 O 1 t~ 2 \ 
~rE +r~r + ~ ) T + ~  = - Qf(r,O) (18) 

f f  

with boundary conditions 

T _ ~ ( 1 , 0 ) = I ,  T~(1,0)=0,  0~0~<27r (19) 

It is obvious that 

T_ ~(r, 0)= 1 + T~(r,O) (20) 

So we may find T~(r,O) only. The solution of Eq (18) is 
not possible in general. But for the hydrodynamic case 
0/~0 = 0 and f(r, O)= r2/4 and so we get 

T®(r)=Q(1-r4)/64 (hydrodynamic case, ~=0)  (21) 

S o l u t i o n  a s  z - ~  _+oo 

The analytical solution of Eq (18) subject to Eq (19) is not 
possible in closed form because the expression for f(r, O) 
is very complicated. The usual finite difference method is 
also not suitable owing to the singularity at r = 0. Further, 
to get reasonably accurate results a small mesh size has to 
be used. This leads to a large number of unknowns. So an 
appropriate method is the ADI method. For  the diffusion 
equation in r ~  geometry it has been given by Evans and 
Gane 4,s. This not only takes care of the singularity but 
also reduces the number of unknowns involved at a time, 
thus reducing the storage. The resulting equations along 
radial and transverse directions have simple structure for 
which efficient algorithms are available. 

implicit method for magnetohydrodynamic heat transfer 

Let us introduce the finite difference mesh by 
defining 

Ar=l/(I+0.5), ri=(i-l .5)Ar , i = 2 ( 1 ) I + 2  

AO=2n/J, Oj=(j-1)AO, j = l ( 1 ) J  (22) 

Denoting T~ by q~, the ADI equations for Eq (18) are as 
follows: 

(i) For j =  l(1)J 

c * - bic~*-i j + (co + 2)~b* - ,4i+1 j 
2 n n = hi (Oi,j-1 + Oi.j+ ,) + ( ~ -  2h~)dPTj + QhZfq, 

i=  2(1)I + 1 (23) 

(ii) For  i=2 (1 ) I+  1 

h2,~, + 1 i , , P , i , j _ l . ~ _ ( ( D  2 n + l  /~2¢hn + 1 - + 2hl )~blj -'oi'~i,j+l 

c * +Qh2fo, = bi¢*_ z,j + (co - 2 ) ¢ *  + i~bi+ 1J 

j =  l(2)J (24) 
where 

bi= l -2r l ,  ci= l + , h=Ar ,  hi=h/(riAO) (25) 

Notice that system (23) is a tridiagonal system with I 
unknowns for a fixed j. Since b2 = 0, the value d~'~.j does 
not appear in (23). Also 4~?+2j=0 due to boundary 
conditions at z = oo, since the coefficient matrix does not 
depend on j,  we can have its LU-decomposition and use it 
for all values ofj. Solving (23) for various values ofj  we get 
q~* at all nodes in the section. 

So far as the system (24) is concerned we notice 
that 

~i-~1 ,h,+l and r h n + l - - r h n + l  
"~- tt~, i, J ~t., i , j  + l - -  ,.i.. i, 1 

and therefore it is not a tridiagonal system but a periodic 
tridiagonal system for which we use the algorithms given 
by Evans 1°'11. This will give ~b "+' at all nodes. 

Thus by choosing the parameter o~ suitably to 
have as fast a convergence as possible, and applying the 
above iterative process repeatedly, we obtain the 
temperature distribution in a section as z--* oo. The 
temperatures for z---~ - ~ can then be obtained from Eq 
(20). To obtain results on the line r = 0, it is not difficult to 
obtain the following interpolation formula: 

1 J 
- (315¢2 j - -  420~b 3j -4- 378q~4j - 180¢5 j + 35~b6j ) 4o 128J j=~ 

(26) 

C o m p u t a t i o n  o f  T(r, O, z) 
Let us now return to the differential Eq (6) where the 
boundary conditions are provided by Eqs (16) and (17). 
In the previous section we have computed T~(r, 0). From 
Eq (20) we then obtain T_ ~(r, 0). As already remarked, 
the perturbations in T due to discontinuity in the 
boundary temperature at z = 0  die out as we move on 
either side of z = 0. Thus there exists a positive number Z 
such that the difference between T(r, O, z) and T + ~o(r, 0) is 
negligible for ]z[/> Z. A series of numerical experiments 
has been performed to estimate Z. Once it is known, the 
boundary conditions (17) may be replaced by 

T(r,O,Z)= Too(r,O) 

T(r, O, - Z ) =  T_ ~(r, 0) (27) 
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We thus have a Dirichlet problem in the domain 0 ~< r < 1, 
0 < 0 < 2 n ,  - Z < z < Z .  Eq (7) is a three-dimensional 
elliptic equation with variable coefficients. Since analytic 
solution is out of the question, we use the ADI method for 
r ~ - z  geometry. Defining the r ~  mesh by Eqs (22) and 
the mesh size in the z-direction by 

A z = 2 Z / ( K + I ) ,  Z k = - Z + ( k - 1 ) A z ,  k = l ( 1 ) K + 2  

(28) 

where there will be K internal nodes in the z-direction, the 
ADI equations are found to be 

(i) F o r j = l ( 1 ) J ,  k = Z ( 1 ) K + l  

-- biT*- 1.jk + (tO + 2)T* k c T* - "o) ,-tr2 ,~ 2x,'rm - -  i i+ 1 , j k - -  [ - -  ,~n i - -  AS ) l i j  k 

2 n n n n +hi ( T i j -  1,k + Ti j+ l,k) +cqTq ,k -  t + doTq,k + 1 + Qh2fq 

i=2 (1 ) I+  1 (29) 

(ii) For  i=  2(1)I + 1, k = 2(1)K + 1 

h 2T** (L0 2 ** Z,2 T** (~0-- 2-- 2 ** - - . . i _ _ i , j _ l , k J t  - + 2 h i ) T q k - - r ~ i  z i , j + l , k  = 2s ) T i j  k 

* + QhEfq * * + c o W e R  + d i j T i j , k + l  + b i T i -  1 ,jR J r - c i T i +  1,jk , - 1 

j =  l(1)J (30) 

(iii) For  i=2 (1 ) I+  1 , j =  l(1)d 

~ n + l  " l - ( t O + 2 S  ) T i j  k 1 d T " + 1  = ( ( ~ 0 - -  2 * *  _Cq~q,k -~ 2 "+ --"q--q,k+~ 2 - 2 h i ) T i j k  
* *  * *  2 * *  * *  

1 ,k "[- T i , j +  1 ,k) + + biTi - Xjk + ciTi+ Xdk + hl ( T i j -  QhZfij 

k=  2(1)K (31) 

where 

c o = s  2 +0.5PVqhs,  d o = s  2 - 0 . 5 P V u h s  (32) 

These are either tridiagonal or periodic tridiagonal 
systems and can be solved by the methods mentioned 
above. 

Numer ica l  results and discussion 

The numerical work may be divided into the following 
parts. 

(i) Computation o f  f(r ,O).  To compute the 
numerical values o f f ( r ,  O) at the mesh points in a section, 
Eqs (10) and (11) were differentiated and the derivatives of 

u and v substitutdd from Eqs (12) and (13). For  this step, 
subroutines were prepared to compute I~, and I ' .  Due to 
shortage of space, these details and the numerical values 
are not given here. 

(ii) Computation o f  T+_oo(r,O). This was done by 
using the method described above. Since it has not been 
possible to estimate theoretically the optimum value of ~o 
as a function of Hartmann number and the mesh size, 
after a lot of experimentation it was found that for I = 5, 
d =1 6 ,  Q = I ,  ct=0 to lO, the optimum value is 
approximately 1.3. This gives stable results up to at least 6 
significant digits in less than 50 iterations. For  one value 
ofct the CPU time on DEC-2050 was less than 10s for 50 
iterations. The iterations were started with zero initial 
values at all mesh points in the section. The values at r = 0 
are found using Eq (26). We have given values of Too(r, O) 
at selected points for various values of 0t in Table 1. 

(iii) Computation o f  T(r, O,z). Here the 
computations are done for I = 5, J = 16, K = 23, Q = 1 for 
various values of*t and P. After repeating the calculations 
for various values of Z it was found that for tz[ > 3, the 
effect of z on T is negligible. So we have chosen Z = 3. The 
optimum value of o~ was found to be approximately 1.5. 
About 40 iterations were required for the results to 
converge up to 6 significant digits. The CPU time on 
DEC-2050 was about 27 s for one value of at and P for 40 
iterations. The starting values for iterations were taken as 

T ,~ t = T ~o, Ti~,K + 2 = T~ 

T~jk=l.O , - - 3 < Z < 0  

=0.5, z=O 

=0,  0 < z < 3  (33) 

Due to the large number of variables and parameters 
involved, it is not possible to give here all the numerical 
results. 

Table 2 gives the temperatures on the axis of the 
pipe for ~ = 0, 2, 5, 10 and P =  1, 5, i0 and 20. From the 
results we make the following observations. 

(i) As z--, ~ ,  the temperature distribution ceases to 
depend upon P as expected. From Table 1 and Fig 1 
it can be seen that as = increases, the temperature 
decreases at all points in a section. Also the 

Table I Va lues  o f  10 T= (r,O) for various ~, • and 0 
( w = 1 . 3 , / = 5 ,  J=16 ,  Q = I ,  50 iterations) 

r 

ct 0 0 1/11 3/11 5/11 7/11 9/11 1.0 

10 Too (r,e) 

0 Arb 0.15625 0.15624 0.15539 0.14958 0.13063 0.08623 
2 0 0.09177 0.09203 0.08827 0.08124 0.07114 0.05331 

n/4 0.09177 0.09215 0.08925 0.08311 0.07216 0.05067 
n/2 0.09177 0.09227 0.09016 0,08460 0.07234 0.04751 

5 0 0.02813 0.02800 0.02635 0.02310 0.01847 0.01310 
n/4 0.02813 0.02805 0.02681 0.02431 0.02047 0.01469 
n/2 0.02813 0.02810 0.02721 0.02516 0.02134 0.01424 

10 0 0.00770 0.00767 0.00721 0.00627 0.00479 0.00268 
n/4 0.00770 0,00766 0.00725 0.00642 0.00512 0.00328 
n/2 0.00770 0.00766 0.00738 0.00680 0.00577 0.00393 

0.00000 

0.00000 
0.00000 
0.00000 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
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temperature is maximum at r = 0 and decreases to 
zero at the boundary. 

(ii) Along a line parallel to the axis of the pipe the 
temperature decreases as we move from z = - ~  to 
z = ~ .  As this line moves closer to the wall, a sharp 
fall in temperature takes place as one moves across 
the section discontinuity in the wall temperature. 
This happens for all values of~t and P for all lines. The 
temperature distribution along the axis of the pipe is 
given in Table 2. 

(iii) As far as the effect of the parameter P (Peclet number) 
is concerned, we see from Figs 3(a)-(d) and Table 2 
that, as P is increased, the effect of discontinuity in 

(iv) 

~v) 

boundary temperatures continues up to longer 
distances. This is the well-known physical 
interpretation of the Peclet number. When P is large 
convection dominates conduction. 
In the entire domain, increase in ~ results in decrease 
in temperature. Further,  the effect of ~ is more 
pronounced when P is large, as is evident from Figs 
3(a)-(d). 
We have not explicitly studied the effect of Q since it 
can always be absorbed in T, as can be seen from Eq 
(6). So, as Q is increased, T, will also increase in the 
same proportion. For  all computations, Q has been 
chosen to be unity. 
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Table 2 Values of T on the axis of the pipe for various ¢, P and z 

z 

P ~ - 3  - 2  -1  -0 .5  0 0.5 1 2 3 
T 

1 0 1.01 56 1.0095 0.9533 0.8228 0.5400 0.2447 0.0956 0.0234 0.0156 
2 1.0092 1.0032 0 . 9 4 4 1  0.8122 0.5276 0.2340 0.0886 0.0175 0.0092 
5 1.0028 0.9964 0.9348 0.7999 0 . 5 1 3 1  0.2213 0.0789 0.0106 0.0028 

10 1.0008 0 . 9 9 4 1  0.9310 0.7944 0.5064 0.2158 0.0750 0.0082 0.0008 

5 0 1.01 56 1.01 30 0.9807 0.8864 0.6359 0.3280 0.1463 0.0348 0.0156 
2 1.0092 1.0064 0.9673 0.8620 0 . 6 0 0 1  0.2947 O. 1233 0.0248 0.0092 
5 1.0028 0.9985 0.9490 0.8292 0.5539 0 . 2 5 4 1  0.0968 0.0140 0.0028 

10 1.0008 0.9954 0.9393 0.8110 0.5290 0.2334 0.0844 0.0099 0.0008 

10 0 1.01 56 1.0146 1.0008 0.9434 0.7426 0.4390 0.2243 0.0595 0.0156 
2 1.0092 1.0082 0.9866 0.9116 0.6847 0.3763 0.1766 0.0394 0.0092 
5 1.0028 1.0003 0.9636 0 . 8 6 2 1  0.6039 0.2976 0.1225 0.0197 0.0028 

10 1.0008 0.9967 0.9486 0.8307 0.5570 0.2564 0.0972 0.0124 0.0008 

20 0 1.01 56 1.01 51 1.01 33 0.9976 0.8896 0.6398 0 . 4 0 2 1  0.1465 0.0156 
2 1.0092 1 . 0 0 9 1  1.0040 0 . 9 7 2 1  0.8199 0.5377 0.3046 0.0904 0.0092 
5 1.0028 1 .0021  0.9835 0.9149 0.6965 0.3892 0.1838 0.0372 0.0028 

10 1.0008 0.9985 0 . 9 6 4 1  0.8662 0.6117 0.3046 0.1260 0.0190 0.0008 
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